Gauge-Radar Analysis class.
More...
|
| points = points |
|
float | corr_coeff = 1.0 |
|
str | significant = "False" |
|
float | qc = 0.0 |
|
tuple | points = (p.Fq - m)**2 |
|
Gauge-Radar Analysis class.
◆ __init__()
Lib.gadjust.gra.gra.__init__ |
( |
| self, |
|
|
| points ) |
Initializer.
- Parameters
-
points | list of synop points |
◆ get_2nd_order_adjustment()
Lib.gadjust.gra.gra.get_2nd_order_adjustment |
( |
| self | ) |
|
Derives a second-order statistical relation including quality control.
- Returns
- coefficients a, b, c together with mean and standard deviation of the G-R point pairs (dB)
◆ get_correlation()
Lib.gadjust.gra.gra.get_correlation |
( |
| self | ) |
|
Derives correlation coefficient between G-R (dB) and distance.
- Returns
- float correlation coefficient
◆ get_mean_quality()
Lib.gadjust.gra.gra.get_mean_quality |
( |
| self | ) |
|
Derives mean QUALITY of the point pairs.
- Returns
- float mean quality
◆ get_std_deviation()
Lib.gadjust.gra.gra.get_std_deviation |
( |
| self | ) |
|
Derives mean and standard deviation of the G-R point pairs.
- Returns
- tuple containing mean and standard deviation
◆ get_stddev_quality()
Lib.gadjust.gra.gra.get_stddev_quality |
( |
| self, |
|
|
| m ) |
Derives the standard deviation of G-R point-pair quality.
- Parameters
-
- Returns
- float standard deviation
◆ least_square_nth_degree()
Lib.gadjust.gra.gra.least_square_nth_degree |
( |
| self, |
|
|
| order ) |
Utility method for deriving least-squares fit of the nth order.
- Parameters
-
order | int representing order of fit |
◆ quality_control_2nd_order()
Lib.gadjust.gra.gra.quality_control_2nd_order |
( |
| self, |
|
|
| a, |
|
|
| b, |
|
|
| c ) |
Conducts quality control of the relation between G-R point pairs and surface distance.
Point pairs more than 2 standard deviations in error are rejected.
- Parameters
-
a | float coefficient a |
b | float coefficient b |
c | float coefficient c |
The documentation for this class was generated from the following file:
- /github/workspace/Lib/gadjust/gra.py